Residual Gated Graph ConvNets

نویسندگان

  • Xavier Bresson
  • Thomas Laurent
چکیده

Graph-structured data such as functional brain networks, social networks, gene regulatory networks, communications networks have brought the interest in generalizing neural networks to graph domains. In this paper, we are interested to design efficient neural network architectures for graphs with variable length. Several existing works such as Scarselli et al. (2009); Li et al. (2016) have focused on recurrent neural networks (RNNs) to solve this task. A recent different approach was proposed in Sukhbaatar et al. (2016), where a vanilla graph convolutional neural network (ConvNets) was introduced. We believe the latter approach to be a better paradigm to solve graph learning problems because ConvNets are more pruned to deep networks than RNNs. For this reason, we propose the most generic class of residual multi-layer graph ConvNets that make use of an edge gating mechanism, as proposed in Marcheggiani & Titov (2017). Gated edges appear to be a natural property in the context of graph learning tasks, as the system has the ability to learn which edges are important or not for the task to solve. We apply several graph neural models to two basic network science tasks; subgraph matching and semi-supervised clustering for graphs with variable length. Numerical results show the performances of the new model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Online Convex Optimization with Gated Games

Methods from convex optimization are widely used as building blocks for deep learning algorithms. However, the reasons for their empirical success are unclear, since modern convolutional networks (convnets), incorporating rectifier units and max-pooling, are neither smooth nor convex. Standard guarantees therefore do not apply. This paper provides the first convergence rates for gradient descen...

متن کامل

Automated Pulmonary Nodule Detection via 3D ConvNets with Online Sample Filtering and Hybrid-Loss Residual Learning

In this paper, we propose a novel framework with 3D convolutional networks (ConvNets) for automated detection of pulmonary nodules from low-dose CT scans, which is a challenging yet crucial task for lung cancer early diagnosis and treatment. Different from previous standard ConvNets, we try to tackle the severe hard/easy sample imbalance problem in medical datasets and explore the benefits of l...

متن کامل

Spatiotemporal Residual Networks for Video Action Recognition

Two-stream Convolutional Networks (ConvNets) have shown strong performance for human action recognition in videos. Recently, Residual Networks (ResNets) have arisen as a new technique to train extremely deep architectures. In this paper, we introduce spatiotemporal ResNets as a combination of these two approaches. Our novel architecture generalizes ResNets for the spatiotemporal domain by intro...

متن کامل

Learning Gating ConvNet for Two-Stream based Methods in Action Recognition

For the two-stream style methods in action recognition, fusing the two streams’ predictions is always by the weighted averaging scheme. This fusion method with fixed weights lacks of pertinence to different action videos and always needs trial and error on the validation set. In order to enhance the adaptability of two-stream ConvNets and improve its performance, an end-to-end trainable gated f...

متن کامل

Letter-Based Speech Recognition with Gated ConvNets

In this paper we introduce a new speech recognition system, leveraging a simple letter-based ConvNet acoustic model. The acoustic model requires only audio transcription for training – no alignment annotations, nor any forced alignment step is needed. At inference, our decoder takes only a word list and a language model, and is fed with letter scores from the acoustic model – no phonetic word l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07553  شماره 

صفحات  -

تاریخ انتشار 2017